Sub espacio vectorial:
Esto dice que si W es un sub conjunto del espacio vectorial V entonces este es un sub espacio de V. Si W es un espacio vectorial bajo las operaciones de suma y multiplicación por un escalar definidas en V.
Para que W sea un sub espacio de V debe cumplir las propiedades de cierre de la suma y la multiplicación por un escalar también debe cumplir la ley del elemento neutro bajo la suma, el inverso bajo la suma y el neutro bajo la multiplicación por un escalar.
TEMA 4.3 PROPIEDADES DE VECTORES, COMBINACION LINEAL, DEPENDENCIA E INDEPENDENCIA LINEAL.
Combinación Lineal:
Se denomina combinación lineal a u vector V en un espacio vectorial U u un cuerpo h.
Si los vectores v1, v2, v3, ..., vn en u si V puede expresarse como:
V = c1v1 + c2v2 + c3v3 +... + cnvn donde c son escalares del cuerpo h.
Envolvente Lineal:
Este es el conjunto de todas las combinaciones lineales semejantes denotado por Lin(v1, v2, ..., vn) y se denomina envolvente lineal de u1, u2, ...,un.
Siendo S un sub conjunto de un espacio vectorial V entonces Lin S es un sub conjunto de un espacio vectorial V y si W es un subconjunto de V que contiene a S, necesariamente Lin S es complemento de W.
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario