ARGAND
Fue un contable y matemático suizo que describió en 1806 la representación geométrica de los números complejos, creando lo que se conoce como plano de Argand.
En matemáticas, el plano complejo es una forma de visualizar el espacio de los números complejos. Puede entenderse como un plano cartesiano modificado, en el que la parte real está representada en el eje x y la parte imaginaria en el eje y. El eje x también recibe el nombre de eje real y el y eje imaginario
Un número puede ser visualmente representado por un par de números formando un vector en un diagrama llamado diagrama de Argand
El plano complejo a veces recibe el nombre de plano de Argand a causa de su uso en diagramas de Argand. Su creación se atribuye a Jean-Robert Argand, aunque fue inicialmente descrito por el encuestador y matemático Noruego-danés Caspar Wessel.
El concepto de plano complejo permite interpretar geométricamente los números complejos. La suma de números complejos se puede relacionar con la suma con vectores, y la multiplicación de números complejos puede expresarse simplemente usando coordenadas polares, donde la magnitud del producto es el producto de las magnitudes de los términos, y el ángulo contado desde el eje real del producto es la suma de los ángulos de los términos.
Los diagramas de Argand se usan frecuentemente para mostrar las posiciones de los polos y los ceros de una función en el plano complejo.
El análisis complejo, la teoría de las funciones complejas, es una de las áreas más ricas de la matemática, que encuentra aplicación en muchas otras áras de la matemática así como en física, electrónica y muchos otros campos.
POTENCIA
La potenciación es una operación matemática, que se nota como an, y que se lee "a elevado a n", que involucra dos números: la base a y el exponente n. Su definición varía según el conjunto numérico al que pertenezca el exponente:
• Cuando el exponente es un número natural, la potenciación corresponde a una multiplicación de varios factores iguales: el exponente determina la cantidad de veces que la base se multiplica por sí misma. Por ejemplo:
• 24 =2.2.2.2=16. En general:
an =ax…xa
• cuando el exponente es un entero negativo -p, una potencia que tenga exponente negativo es el resultado de elevar la fracción inversa de la base 1/a al exponente positivo p.
a-p =1/ap
La definición de potenciación puede extenderse a exponentes reales, complejos o incluso matriciales.
Como caso especial, destacar que cualquier número (salvo el 0) elevado a 0 da 1. El caso particular de 00, en principio, no está definido (ver en Cero). Sin embargo, también se puede definir como 1 si nos atenemos a la idea de producto vacío o simplemente por analogía con el resto de números.
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario